News Posts matching #RibbonFET

Return to Keyword Browsing

Siemens and Intel Foundry Collaborates on Integrated Circuits and Advanced Packaging Solutions for 2D and 3D IC

Siemens Digital Industries Software today announced that its continued collaboration with Intel Foundry has resulted in multiple product certifications, updated foundry reference flows, and additional technology enablement leveraging the foundry's leading-edge technologies for next-generation integrated circuits (IC) and advanced packaging. Siemens is a founding partner of the Intel Foundry Accelerator Chiplet Alliance - enabling a new and compelling solution for 3D IC and chiplet offerings to a breadth of semiconductor market verticals.

Intel 18A Certification Achievements
Siemens' industry-leading Calibre nmPlatform tool is now certified for the latest Intel 18A production Process Design Kit (PDK). Intel 18A represents a significant technological leap forward, featuring innovative RibbonFET Gate-all-around transistors and the industry's first PowerVia backside power delivery. This Calibre certification allows mutual customers to continue leveraging the Calibre nmPlatform tool as their industry-standard sign-off solution with Intel Foundry's most advanced manufacturing process, accelerating time-to-market for next-generation chip designs.

Intel 14A Node Debuts "Turbo Cells" to Boost Frequency and Cut Power

During Intel's Foundry Direct Connect symposium in San Jose, where Intel confirmed the ramp of the 18A node at the Arizona fab, the company also announced Intel has achieved a significant advancement in its future node development with the announcement of "turbo cell" technology for its upcoming 14A process. Now slated for production in 2027, this progress supports Intel's objective of introducing five process nodes within a four-year period. The 18A node is presently in risk production and incorporates RibbonFET gate-all-around transistors along with PowerVia, Intel's backside power-delivery architecture. Intel anticipates transitioning 18A to full-volume manufacturing later this year, thereby internalizing greater chiplet assembly work that was previously outsourced for designs such as Lunar Lake.

For the upcoming 14A process, it combines second-generation RibbonFET with PowerDirect, the company's enhanced power network. When implemented using High-NA EUV lithography, Intel projects a performance-per-watt gain of between 15 and 20 percent over the 18A process. Of particular interest is the introduction of turbo cells. These specialized standard-cell libraries enable designers to integrate both high-performance and energy-efficient cells within a single design block. Such flexibility permits precise optimization of chip speed, power consumption, and die area to meet diverse application requirements. In practical terms, turbo cells are expected to elevate peak CPU frequencies and accelerate critical GPU pathways without incurring substantial energy penalties. Intel has already distributed its PDK for the 14A node to prospective customers for feedback, with multiple partners already planning test-chip tape-outs. Complementing these advances, the company will employ advanced packaging technologies, including Foveros 3D stacking and EMIB, and a new high-bandwidth EMIB-T variant to integrate 14A and 18A dies within unified hybrid packages.

Ansys Thermal and Multiphysics Solutions Certified for Intel 18A Process and 3D-IC Designs

Ansys today announced thermal and multiphysics signoff tool certifications for designs manufactured with Intel 18A process technology. These certifications help ensure functionality and reliability of advanced semiconductor systems for the most demanding applications—including AI chips, graphic processing units (GPUs), and high-performance computing (HPC) products. Intel Foundry and Ansys have also enabled a comprehensive multiphysics signoff analysis flow for Intel Foundry's EMIB technology used for creating multi-die 3D integrated circuit (3D-IC) systems.

Recognized as industry-leading solutions, RedHawk-SC and Totem deliver speed, accuracy, and capacity to analyze the power integrity and reliability of Intel 18A RibbonFET Gate-all-around (GAA) transistors with PowerVia backside power delivery. For scalable electromagnetic analysis, Ansys is introducing HFSS-IC Pro, a new addition to the HFSS-IC product family. HFSS-IC Pro is certified for modeling on-chip electromagnetic integrity in radio frequency chips, Wi-Fi, 5G/6G, and other telecommunication applications made with the Intel 18A process node.

Synopsys & Intel Foundry Collaborate on Angstrom-Scale Chips - Using 18A & 18A-P Technologies

At today's Intel Foundry Direct Connect 2025 event, Synopsys, Inc. announced broad EDA and IP collaborations with Intel Foundry, including availability of its certified AI-driven digital and analog design flows for the Intel 18A process node and production-ready EDA flows for the Intel 18A-P process node with RibbonFET Gate-all-around transistor architecture and the industry's first commercial foundry implementation of PowerVia backside power delivery. To drive multi-die design innovation forward, Synopsys and Intel Foundry are collaborating to enable Intel's new Embedded Multi-die Interconnect Bridge-T (EMIB-T) advanced packaging technology with an EDA reference flow powered by Synopsys 3DIC Compiler. With its EDA flows, multi-die solution, and broad portfolio of Synopsys' foundation and interface IP on Intel 18A and Intel 18A-P, Synopsys is helping designers accelerate the development of highly optimized AI and HPC chip designs from silicon to systems.

In a keynote presentation at today's event, John Koeter, Senior Vice President, for the Synopsys IP Group, emphasized: "The successful collaboration between Synopsys and Intel Foundry is advancing the semiconductor industry with silicon to system design solutions to meet the evolving needs for AI and high-performance computing applications. Our production-ready EDA flows, IP, and multi-die solution, provides our mutual customers with comprehensive technologies to accelerate the development of chip designs that meet or exceed their requirements."

Intel's 18A Node Outperforms TSMC N2 and Samsung SF2 in 2 nm Performance Class

Intel's 18A node isn't all about yields and density (which are still very important factors) but also performance. According to Taiwanese media 3C News, citing TechInsights research and calculations, the new leader of node performance is Intel 18A. On a custom scale used by TechInsights, Intel 18A gets a 2.53 score, while the performance score of TSMC N2 is 2.27, and the performance score of Samsung SF2 is 2.19. This is all among two nm-class nodes, where Intel leads the category. Being the first node with a Backside Power Delivery Network (BSPDN), it will appear in the Panther Lake CPUs in late 2025 for testing and early 2026 for shipments. This new power architecture boosts layout efficiency and component utilization by 5-10%, lowers interconnect resistance, and enhances ISO power performance by up to 4%, thanks to a significant drop in intrinsic resistance versus traditional front‑end power routing. Relative to its predecessor, Intel 3, the 18A process delivers a 15% improvement in performance per watt and packs 30% more transistors into the same area.

Featuring RibbonFET design, it has entered risk production. According to Intel, "This final stage is about stress-testing volume manufacturing before scaling up to high volume in the second half of 2025." When it comes to other aspects like SRAM density, high‑performance SRAM cells shrank from 0.03 µm² in Intel 3 to 0.023 µm² in Intel 18A, while high‑density cells contracted to 0.021 µm², reflecting scaling factors of 0.77 and 0.88 respectively and defying previous assumptions that SRAM scaling had plateaued. Intel's innovative "around‑the‑array" PowerVia approach addresses voltage drops and interference by routing power vias to I/O, control, and decoder circuits, freeing up the bit‑cell area from frontal power supplies. The result is a 38.1 Mbit/mm² macro bit density, positioning Intel to rival TSMC's N2. All this, combined with BSPDN, is shaping up a powerful node. We can't wait to get our hands on some 18A silicon in the future and run it through our labs for testing.

NVIDIA and Broadcom Testing Intel 18A Node for Chip Production

TSMC appears to be in for a competitive period, as sources close to Reuters note that both NVIDIA and Broadcom have tested Intel's 18A node with initial test chips. These tests are early indicators of whether Intel can successfully pivot into the contract manufacturing sector currently dominated by TSMC. Intel's 18A technology—featuring RibbonFET transistors and PowerVia backside power delivery—continues progressing through its development roadmap. The technology's performance characteristics reportedly sit between TSMC's current and next-generation nodes, creating a narrow window of competitive opportunity that Intel must capitalize on. What makes these particular tests significant is their positioning relative to actual production commitments. Chip designers typically run multiple test phases before allocating high-volume manufacturing contracts, with each progression reducing technical risk.

Reuters also reported that a six-month qualification delay for third-party IP blocks, which represents a critical vulnerability in Intel's foundry strategy, potentially undermining its ability to service smaller chip designers who rely on these standardized components. However, when this IP (PHY, controller, PCIe interface, etc.) is qualified for the 18A node, it is expected to go into many SoCs that will equal in millions of shipped chips. Additionally, the geopolitical dimensions of Intel's foundry efforts ease concerns of US-based chip designers as they gain a valuable manufacturing partner in their supply chain. Nonetheless, the 18A node is competitive with TSMC, and Intel plans only to evolve from here. Intel's current financial trajectory is the number one beneficiary if it proves good. With foundry revenues declining 60% year-over-year and profitability pushed beyond 2027, the company must demonstrate commercial viability to investors increasingly skeptical of its capital-intensive manufacturing strategy. Securing high-profile customers like NVIDIA could provide the market validation necessary to sustain continued investment in its foundry infrastructure.

Intel 18A Is Officially Ready for Customer Projects

Intel has updated its 18A node website with the message, "Intel 18A is now ready for customer projects with the tape outs beginning in the first half of 2025: contact us for more information." The contact hyperlink includes an email where future customers can direct their questions to Intel. Designed as a turnaround node for Intel, 18A carries industry-leading features like SRAM density scaling comparable with TSMC's N2, 15% better performance per watt, and 30% better chip density vs. the Intel 3 process node used in Intel Xeon 6, as well as PowerVia backside-power delivery to increase transistor density.

Other features like RibbonFET are the first to replace FinFET transistors, making gate leakage a tighter control. Interestingly, Intel's first products to use the 18A node are client CPUs "Panther Lake" and "Clearwater Forest" Xeon CPUs for data centers. External Intel Foundry customers using the 18A node include Amazon's AWS, Microsoft for its internal silicon for Azure, and Broadcom exploring 18A-based designs. The process of gaining customers for advanced manufacturing is complex, as many existing Samsung/TSMC customers are not risking their capacity and contracts with established advanced silicon makers. However, if Intel's first few customers prove successful, many others could flock over to Intel's fabs as geopolitical tensions are questioning whether the current models of the semiconductor supply chain are feasible in the future. If US companies and startups decide to move with Intel for their chip manufacturing, Intel could experience a complete recovery.

Intel 18A Node SRAM Density On-Par with TSMC, Backside Power Delivery a Big Bonus

Intel has unveiled some interesting advances in semiconductor manufacturing at the International Solid-State Circuits Conference (ISSCC), showcasing the capabilities of its highly anticipated Intel 18A process technology. The presentation highlighted significant improvements in SRAM bit cell density. The PowerVia system, coupled with RibbonFET (GAA) transistors, is at the heart of Intel's node. The company demonstrated solid progress with their high-performance SRAM cells, achieving a reduction from 0.03 µm² in Intel 3 to 0.023 µm² in Intel 18A. High-density cells showed similar improvement, shrinking to 0.021 µm². These advancements represent scaling factors of 0.77 and 0.88 respectively, which are significant achievements in SRAM technology, once thought to be done with scaling benefits.

Implementing PowerVia technology is an Intel-first approach to addressing voltage drops and interference in processor logic areas. Using an "around the array" scheme, Intel strategically applies PowerVias to I/O, control, and decoder elements while optimizing bit cell design without a frontal power supply. The macro bit density of 38.1 MBit/mm² achieved by Intel 18A puts the company in a strong competitive position. While TSMC reported matching figures with their N2 process, Intel's comprehensive approach with 18A, combining PowerVia and GAA transistors, could challenge Smausng and TSMC, with long-term aspirations to compete for premium clients currently served by TSMC, including giants like NVIDIA, Apple, and AMD.

Intel Foundry Adds New Customers to RAMP-C Project for US Defense

Intel Foundry has announced the onboarding of new defense industrial base (DIB) customers, Trusted Semiconductor Solutions and Reliable MicroSystems, as part of the third phase of the Rapid Assured Microelectronics Prototypes - Commercial (RAMP-C) efforts under the Trusted & Assured Microelectronics (T&AM) Program in the Office of the Under Secretary of Defense for Research and Engineering (OUSD (R&E)). The RAMP-C project, awarded through the Strategic & Spectrum Missions Advanced Resilient Trusted Systems (S²MARTS) Other Transaction Authority (OTA), allows DIB customers to take advantage of Intel Foundry's leading-edge Intel 18A process technology and advanced packaging for prototypes and high-volume manufacturing of commercial and DIB products for the U.S. Department of Defense (DoD).

"We are very excited to welcome Trusted Semiconductor Solutions and Reliable MicroSystems to the RAMP-C project we are engaged in with the DoD. The collaboration will drive cutting-edge, secure semiconductor solutions essential for our nation's security, economic growth and technological leadership. We are proud of the pivotal role Intel Foundry plays in supporting U.S. national defense and look forward to working closely with our newest DIB customers to enable their innovations with our leading-edge Intel 18A technology," said Kapil Wadhera, vice president of Intel Foundry and general manager of Aerospace, Defense and Government Business Group.

Intel Foundry Unveils Technology Advancements at IEDM 2024

Today at the IEEE International Electron Devices Meeting (IEDM) 2024, Intel Foundry unveiled new breakthroughs to help drive the semiconductor industry forward into the next decade and beyond. Intel Foundry showcased new material advancements that help improve interconnections within a chip, resulting in up to 25% capacitance by using subtractive ruthenium. Intel Foundry also was first to report a 100x throughput improvement using a heterogeneous integration solution for advanced packaging to enable ultra-fast chip-to-chip assembly. And to further drive gate-all-around (GAA) scaling, Intel Foundry demonstrated work with silicon RibbonFET CMOS and with gate oxide module for scaled 2D FETs for improved device performance.

"Intel Foundry continues to help define and shape the roadmap for the semiconductor industry. Our latest breakthroughs underscore the company's commitment to delivering cutting-edge technology developed in the U.S., positioning us well to help balance the global supply chain and restore domestic manufacturing and technology leadership with the support of the U.S. CHIPS Act," says Sanjay Natarajan, Intel senior vice president and general manager of Intel Foundry Technology Research.

"Jaguar Shores" is Intel's Successor to "Falcon Shores" Accelerator for AI and HPC

Intel has prepared "Jaguar Shores," its "next-next" generation AI and HPC accelerator, successor to its upcoming "Falcon Shores" GPU. Revealed during a technical workshop at the SC2024 conference, the chip was unveiled by Intel's Habana Labs division, albeit unintentionally. This announcement positions Jaguar Shores as the successor to Falcon Shores, which is scheduled to launch next year. While details about Jaguar Shores remain sparse, its designation suggests it could be a general-purpose GPU (GPGPU) aimed at both AI training, inferencing, and HPC tasks. Intel's strategy aligns with its push to incorporate advanced manufacturing nodes, such as the 18A process featuring RibbonFET and backside power delivery, which promise significant efficiency gains, so we can expect to see upcoming AI accelerators incorporating these technologies.

Intel's AI chip lineup has faced numerous challenges, including shifting plans for Falcon Shores, which has transitioned from a CPU-GPU hybrid to a standalone GPU, and cancellation of Ponte Vecchio. Despite financial constraints and job cuts, Intel has maintained its focus on developing cutting-edge AI solutions. "We continuously evaluate our roadmap to ensure it aligns with the evolving needs of our customers. While we don't have any new updates to share, we are committed to providing superior enterprise AI solutions across our CPU and accelerator/GPU portfolio." an Intel spokesperson stated. The announcement of Jaguar Shores shows Intel's determination to remain competitive. However, the company faces steep competition. NVIDIA and AMD continue to set benchmarks with performant designs, while Intel has struggled to capture a significant share of the AI training market. The company's Gaudi lineup ends with third generation, and Gaudi IP will get integrated into Falcon Shores.

Intel Clearwater Forest Pictured, First 18A Node High Volume Product

Yesterday, Intel launched its Xeon 6 family of server processors based on P-cores manufactured on Intel 3 node. While the early reviews seem promising, Intel is preparing a more advanced generation of processors that will make or break its product and foundry leadership. Codenamed "Clearwater Forest," these CPUs are expected to be the first high-volume production chips based on the Intel 18A node. We have pictures of the five-tile Clearwater Forest processor thanks to Tom's Hardware. During the Enterprise Tech Tour event in Portland, Oregon, Tom's Hardware managed to take a picture of the complex Clearwater Forest design. With compute logic built on 18A, this CPU uses Intel's 3-T process technology, which serves as the foundation for the base die, marking its debut in this role. Compute dies are stacked on this base die, making the CPU building more complex but more flexible.

The Foveros Direct 3D and EMIB technologies enable large-scale integration on a package, achieving capabilities that previous monolithic single-chip designs could not deliver. Other technologies like RibbonFET and PowerVia will also be present for Clearwater Forest. If everything continues to advance according to plan, we expect to see this next-generation CPU sometime next year. However, it is crucial to note that if this CPU shows that the high-volume production of Intel 18A is viable, many Intel Foundry customers would be reassured that Intel can compete with TSMC and Samsung in producing high-performance silicon on advanced nodes at scale.

Intel 20A Node Cancelled for Foundry Customers, "Arrow Lake" Mainly Manufactured Externally

Intel has announced the cancellation of its 20A node for Foundry customers, as well as shifting majority of Arrow Lake production to external foundries. The tech giant will instead focus its resources on the more advanced 18A node while relying on external partners for Arrow Lake production, likely tapping TSMC or Samsung for their 2 nm nodes. The decision follows Intel's successful release of the 18A Process Design Kit (PDK) 1.0 in July, which garnered positive feedback from the ecosystem, according to the company. Intel reports that the 18A node is already operational, booting operating systems and yielding well, keeping the company on track for a 2025 launch. This early success has enabled Intel to reallocate engineering resources from 20A to 18A sooner than anticipated. As a result, the "Arrow Lake processor family will be built primarily using external partners and packaged by Intel Foundry".

The 20A node, while now cancelled for Arrow Lake, has played a crucial role in Intel's journey towards 18A. It served as a testbed for new techniques, materials, and transistor architectures essential for advancing Moore's Law. The 20A node successfully integrated both RibbonFET gate-all-around transistor architecture and PowerVia backside power delivery for the first time, providing valuable insights that directly informed the development of 18A. Intel's decision to focus on 18A is also driven by economic factors. With the current 18A defect density already at D0 <0.40, the company sees an opportunity to optimize its engineering investments by transitioning now. However, challenges remain, as evidenced by recent reports of Broadcom's disappointment in the 18A node. Despite these hurdles, Intel remains optimistic about the future of its foundry services and the potential of its advanced manufacturing processes. The coming months will be crucial as the company works to demonstrate the capabilities of its 18A node and secure more partners for its foundry business.

Intel 18A Powers On, Panther Lake and Clearwater Forest Out of the Fab and Booting OS

Intel today announced that its lead products on Intel 18A, Panther Lake (AI PC client processor) and Clearwater Forest (server processor), are out of the fab and have powered-on and booted operating systems. These milestones were achieved less than two quarters after tape-out, with both products on track to start production in 2025. The company also announced that the first external customer is expected to tape out on Intel 18A in the first half of next year.

"We are pioneering multiple systems foundry technologies for the AI era and delivering a full stack of innovation that's essential to the next generation of products for Intel and our foundry customers. We are encouraged by our progress and are working closely with customers to bring Intel 18A to market in 2025." -Kevin O'Buckley, Intel senior vice president and general manager of Foundry Services

Intel Foundry Services (IFS) and Cadence Design Systems Expand Partnership on SoC Design

Intel Foundry Services (IFS) and Cadence Design Systems Inc. today announced a multiyear strategic agreement to jointly develop a portfolio of key customized intellectual property (IP), optimized design flows and techniques for Intel 18A process technology featuring RibbonFET gate-all-around transistors and PowerVia backside power delivery. Joint customers of the companies will be able to accelerate system-on-chip (SoC) project schedules on process nodes from Intel 18A and beyond while optimizing for performance, power, area, bandwidth and latency for demanding artificial intelligence, high performance computing and premium mobile applications.

"We're very excited to expand our partnership with Cadence to grow the IP ecosystem for IFS and provide choice for customers," said Stuart Paann, Intel senior vice president and general manager of IFS. "We will leverage Cadence's world-class portfolio of leading IP and advanced design solutions to enable our customers to deliver high-volume, high-performance and power-efficient SoCs on Intel's leading-edge process technologies."

Intel Demos 3D Transistors, RibbonFET, and PowerVia Technologies

During the 69th annual IEEE International Electron Devices Meeting (IEDM), Intel demonstrated some of its latest transistor design and manufacturing advancements. The first one in line is the 3D integration of transistors. According to Intel, the company has successfully stacked complementary field effect transistors (CFET) at a scaled gate pitch down to 60 nm. With CFETs promising thinner gate channels, the 3D stacked CFET would allow for higher density by going vertically and horizontally. Intel's 7 node has a 54 nm gate pitch, meaning CFETs are already close to matching production-ready nodes. With more time and development, we expect to see 3D stacked CFETs in the production runs in the coming years.

Next, Intel has demonstrated RibbonFET technology, a novel approach that is the first new transistor architecture since the introduction of FinFET in 2012. Using ribbon-shaped channels surrounded by the gate, these transistors allow for better control and higher drive current at all voltage levels. This allows faster transistor switching speeds, which later lead to higher frequency and performance. The width of these nanoribbon channels can be modulated depending on the application, where low-power mobile applications use less current, making the channels thinner, and high-performance applications require more current, making the channels wider. One stack of nanoribbons can achieve the same drive current as multiple fins found in FinFET but at a smaller footprint.

Intel's Arizona Expansion Marks Construction Milestone

Marking a milestone in Intel's ongoing manufacturing expansion in Arizona, the company today announced that the initial portion of the cleanroom is "weather tight" and the "blow down" phase has begun at the company's two new leading-edge chip factories on its Ocotillo campus in Chandler, Arizona. This milestone underscores Intel's dedication to advancing its presence in the state and fostering technological innovation.

"Our commitment to Arizona runs deep, and as we expand our operations, we remain dedicated to addressing the growing demand for semiconductors and helping the United States regain its leadership position in this vital industry. This milestone represents the result of great teamwork, proficient teams and exceptional craftsmanship of the tradespeople, and it's thanks to their hard work that we've made such significant progress on our site while keeping our culture of caring and the safety of all as our top priority." -Dan Doron, Intel vice president and general manager of Fab Construction Enterprise
Return to Keyword Browsing
Jun 14th, 2025 14:19 EEST change timezone

New Forum Posts

Popular Reviews

TPU on YouTube

Controversial News Posts